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1 Introduction 
Since a primary task of multi-sensor systems (including emitter location systems) is 

to make statistical inferences based on the data collected throughout the sensor system, it 
is important to design compression methods that cause minimal degradation of the quality 
of these inferences.  Although data compression for distributed sensor systems has been 
previously considered by others to some degree, an important aspect not considered in 
other researcher’s work is that sensor systems may have multiple inference tasks to 
accomplish (either simultaneously or sequentially).  Multiple inferences generally have 
conflicting compression requirements and finding the right way to balance these conflicts 
is crucial.  For example, we have demonstrated that in a TDOA/FDOA1-based location 
system there is a conflict between compressing for TDOA accuracy vs. FDOA accuracy.  
Thus, trade-offs between TDOA/FDOA accuracy must be made.  However, because this 
trade-off depends on the relative geometry between emitter and receivers, it is not known 
a priori where the proper operating point within this trade-off should be; we have 
developed a way to address that geometry-dependent trade-off [1]. 

There are also trade-offs between multiple sequential inferences. As an example of 
multiple inferences, consider the case where multiple sensors are deployed to detect and 
then locate RF emitters.  This is a case of multiple sequential inferences where the 
compression can be done sequentially as well.  Overall then, a need exists for 
compression that is optimized to handle sequential and/or simultaneous inference tasks.  
We had previously developed some preliminary results addressing this need [1]; here 
those results are extended. 

We have demonstrated that one of the keys to addressing the sequential and 
simultaneous task viewpoint is to use distortion measures that accurately reflect the 
ultimate performance on the tasks.  For estimation tasks the ultimate performance is the 
variance of the estimation error (at least in the unbiased estimate case).  For decision 
tasks the ultimate performance is the probability of detection for a given false-alarm 
probability.  To design compression algorithms with respect to these performance goals it 
is essential to have appropriate, useable metrics that measure the impact of reducing the 
rate on the inference performance.  Our approach uses specific distortion measures to 
assess the impact of compression on the multiple inferences: Fisher information is used to 
assess the impact on estimation accuracy while Chernoff and Kullback-Liebler distances 
are used to assess the impact on decision accuracy.   Although these inference-centric 
distortion measures have been applied before, it has been for single-inference cases; the 
real interest here is to explore how these measures are used to address the data 
compression trade-offs for multiple sequential and simultaneous inferences – namely, the 
case of “detect-then-locate” for RF communication emitters.  

We have also addressed the data compression trade-offs in simultaneous estimation of 
TDOA and FDOA using compressed data from one sensor and local data from a second 
sensor [1].  We have derived the Fisher information-based distortion measure for these 
two estimates and found that the TDOA measure is best optimized in the frequency 
domain while the FDOA measure is best optimized in the time domain.  To address data 
compression trade-offs for the simultaneous estimation of TDOA/FDOA requires the use 
                                                 
1 TDOA = Time-Difference-of-Arrival and FDOA = Frequency-Difference-of-Arrival 
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of a time-frequency representation and we have used a wavelet packet approach.  
Furthermore, this case requires using the Fisher information matrix (FIM); we have found 
that the approach of maximizing the trace of the FIM yields good results.  We showed 
that it is not possible to know a priori the proper trade-off point between TDOA and 
FDOA because it depends on the (unknown) geometry between emitter and sensors; 
however, we have proposed a “geometry adaptive” scheme that sets the compression 
algorithm’s trade-off point based on a small amount of initial data sent compressed for 
the equal trade-off case.      

In [1] these ideas have been refined and extended to include more geometric aspects 
as well as to include preliminary results on the data compression trade-offs for the 
sequential “detect-then-locate” problem – although these sequential results were limited 
to the TDOA-only location case rather than the more general joint TDOA/FDOA-based 
location case.  In addition, we have addressed issues surrounding the use of the short-time 
Fourier transform (STFT) for evaluating the Fisher information contributions of the 
collected data for the purpose of TDOA/FDOA estimation. 

The results presented in this report extend the results described above as follows.  The 
work was focused in four areas:   
(1) New Theoretical Results:  We extend the previous rudimentary insight into how to 
use data compression to accomplish trade-offs between the sequence of tasks in a 
location processing scenario.  In addition, data compression ideas were applied to the 
issue of how to select and configure a set of available sensors for location processing.  
This proved to be a challenging task.   
(2) Refine & Extend Previous Results:  The short-time Fourier transform (STFT) was 
integrated into the data compression algorithm and was shown to properly operate. 
(3) Integrate into a Matlab-based Test-Bed:  Matlab routines for data compression were 
developed and integrated into a single Matlab application.  
(4) General Location Studies:  In support of AFRL emitter location system development 
activities, this report provides important insight into the suitability of the use of previous 
results on emitter location.  In particular, it was shown that there is a danger in using 
previous results that were developed explicitly for the sonar signal case when the signal 
was modeled as a wide-sense stationary Gaussian process.  Results are provided for 
signal models suitable for the communication signal case. 
 

2 New Theoretical Results 
 
2.1 Sequential Detect-Then-Location 

 
The scenario to be considered here is: 

• Receive signals at two receivers: Collect a fixed, specified number of samples 
(a “block of samples”) 

• Compress and share parts of the data to support detection of a common signal 
at the two receivers 

• Once detected… compress and share parts of the data to support estimation of 
the TDOA/FDOA.  
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This method uses the generalized likelihood ratio test derived for this problem in 

Prof. Fowler’s Final Report for his Summer 2005 Summer Faculty Fellowship at AFRL. 
The generalized likelihood ratio test is then used to determine the proper distortion 
measure relative to which the compression algorithm will be optimized for the detection 
task.  As shown in the Summer 2005 final report, the part of the measure that captures 
impact of compression on the detection performance is the post-compression/pre-
detection SNR. Then we will briefly show how to use this to address compression for 
sequential detect-then-TDOA/FDOA processing. 

Thus, the framework we now work under is that we will use SNR as the compression 
distortion measure for the detection task and we will use the TDOA/FDOA Fisher 
information given in [1].  
 

2.1.1 An Algorithm for Sequential Detect-Then-TDOA/FDOA  
 
Stage 1: Maximizing  SNR for the Detection Task                                  

The signal (having N samples) to be compressed is decomposed using a wavelet 
packet transform whose N coefficients are given by 1

0{ }N
n nc −

= .  The allocation of bits to 
these coefficients is done on a block basis, where each block consists of temporally 
adjacent wavelet cells at the same frequency; the number of cells in a block is typically 
chosen to be 8.  Let {  be the Stage 1 allocation of bits to the coefficients; note 
that due to the block basis allocation b1(n) is constant over all values of n within a given 
block.  Let  be the quantization noise variance of the nth coefficient when 
allocated b1(n) bits.  Let 

} 1
1 0
( ) N
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b n −

=
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2
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2
1( (q b n

f  be the frequency of the nth coefficient and let  be the time 
centroid of the block containing the nth coefficient.  Let σ2 be the variance of the noise in 
the received signal before compression.  Then the Stage 1 compression seeks to 
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where DR is bit budget for Stage 1, and the parameter β controls the tradeoff between 
detection and TDOA/FDOA estimation while the parameter α controls the tradeoff 
between TDOA and FDOA accuracy (see [1]).   The second two summation terms in (1) 
measure the importance of a bit for TDOA/FDOA estimation while the first summation 
measures the importance of the bit for detection.  Thus, setting β = 0 causes this 
allocation to be done with no consideration of the Stage 2 task of TDOA/FDOA 
estimation; however, increasing β forces more consideration of the subsequent Stage 2 
task.    
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Stage 2: Maximizing Fisher Information for the TDOA/FDOA Estimation Task 
In this stage the detection processing has been completed and only TDOA/FDOA is 

of interest and its accuracy needs to be refined by sending additional bits allocated to the 
wavelet packet coefficients.  Let { } 1

2 0
( ) N

n
b n −

=
 be the additional bits allocated during Stage 2 

so that the quantization noise variance of the nth coefficient now becomes 
.  Thus, the Stage 2 compression optimization seeks to 2

1 2( ( ) ( ))q b n b n+
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∑
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where ER is bit budget for Stage 2. 
Comparing this to the results in the Summer 2005 Final Report shows that (1) and (2) 

are simple modifications of the detect-then-TDOA algorithm and are expected to behave 
similarly.  No further effort was made to pursue this avenue because of its similarity to 
the earlier ideas; instead this effort was re-directed to the sensor selection problem 
because it turned out to be more challenging than expected.  
 
 
2.2 Sensor Selection and Configuration 
 

Multiple sensors can locate an emitter by sharing data between pairs of sensors and 
computing time/frequency-difference-of-arrival (TDOA/FDOA).  We address optimal 
selection of a subset of sensors to reduce the needed network capacity.  Fisher 
information can be used to assess the data quality across multiple sensors to manage the 
network of sensors to optimize the location accuracy subject to communication 
constraints. From an unconstrained-resources viewpoint it is desirable to use the complete 
set of deployed sensors; however, that generally results in an excessive data volume. 
Selecting a subset of sensors to participate in a sensing task is crucial to satisfying trade-
offs between accuracy and time-line requirements.  For emitter location it is well-known 
that the geometry between sensors and the target plays a key role in determining the 
location accuracy.  Furthermore, the deployed sensors have different data quality.  Given 
these two factors, it is no trivial matter to select the optimal subset of sensors.  

We propose various approaches to this problem and discuss trade-offs between them.  
The first method assumes that the sensors have pre-paired and share their data between 
these pairs; sensor selection then consists of selecting pairs to optimize performance 
while meeting constraints on number of pairs selected.  The second method consists of 
optimally determining pairings as well as selections of pairs but with the constraint that 
no sensors are shared between pairs.  The third method consists of allowing sensors to be 
shared between pairs. 

We discuss several aspects of these three methods.  The first method is simple to 
solve but clearly the pre-pairing requirement makes this method clumsy and very sub-
optimal.  In the second method, it is simple to evaluate the Fisher information but is 
challenging to make the optimal selections of sensors.  However, in the third method 
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things are reversed in that it is more challenging to evaluate the Fisher information but is 
simple to make the optimal selections of sensors.   

Our general interest is in achieving network-wide optimization over a large number of 
simultaneously deployed sensors to enable more efficient and effective cooperation 
within the network of sensors. 

We consider the specific scenario of using the sensors to locate a non-cooperative RF 
emitter by TDOA/FDOA-based methods; here TDOA refers to Time-Difference-of-
Arrival and FDOA to Frequency-Difference-of-Arrival, which can be jointly estimated 
by cross-correlating signals from a pair of the sensors. The accuracy of the TDOA/FDOA 
estimates depends on the signal SNR and the time-frequency structure of the intercepted 
signal; however, the accuracy of the location estimation depends also on the 
emitter/sensor geometry. The goal of our work is to optimize over the set of all sensor 
assets, under the constraint of limited network communication resources. 

2.2.1 Problem Description 
For simplicity we consider only the 2-D geometrical scenario. In the scenario we 

consider a rough estimate of emitter location has already been made (either by our system 
or by a cueing system).  As shown in Figure 1, we wish to find the location of a 
stationary emitter, denoted by [ , ]T

e ex y≡u , using signals intercepted at N unmanned 
aerial vehicle (UAV) sensors denoted S1 to SN, whose positions are [ , ]T

i i ix y≡x  and 
speeds are [ , ]T

i i ix y≡x& & & , for  .  1,= 2, ,i N…

 
Figure 1 Geometry for stationary source location 
 

Let  denote the Euclidean distance between the emitter and the  sensor ; that is ir
thi iS
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 2( ) (i i i e i er x x y= − = − + −x u 2)y . (3) 
 
To compute the TDOA/FDOA measurements the sensors must be paired. We consider 
three types of pairings within the network of sensors, as shown in Figure 2.  

 
Figure 2 Three types of sensor network 
 

(1) Type-I: No Sensor Sharing (two pairs that do not share a sensor are said to be 
“independent pairs”);  

(2) Type-II: De-Centralized Sensor Sharing (i.e., sensors are shared between pairs but no 
sensor is part of more than two pairs); 

(3) Type-III: Centralized Sensor Sharing (i.e., a common reference sensor is used). 

 

6 
 



 

For the  pair of sensors the TDOA thi iτ  and FDOA iω  between the signals received at 
the two sensors in the pair are given by 

 

 
( )
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,1 ,2
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1
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i i i

T Te
i i i i i

r r
c
f
c

τ
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= −
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where is the unit vector pointing from the sensor in the  pair to the emitter, for 
, and 

.i ku thk thi
1,2k = ef  is the transmitted frequency of the transmitter (assumed estimated in 

advance). 
 Assume there are M pairs totally. Let  be the parameter vector to be 

estimated by the  pair of sensors, which is paired by  and (

[ , ]
m m m m

T
m k j k jτ ω=θ

( mkthm )th )th
mj  sensors, where 

 and .  Let 1,2, , ;m M= K {1,2,..., }, mN k∈ ≠m mk j mj ˆ
m mk jτ  and ˆ

m mk jω be the estimates, 
m mk jτΔ  

and 
m mk jωΔ  be the estimation errors, then 
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τ τ τ
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Because the estimate  is obtained by maximum likelihood (ML) estimator ˆ
mθ [16], the 

asymptotic properties of ML estimators [17] gives that the PDF of it is Gaussian with 
covariance matrix that is the inverse of the Fisher information matrix (FIM), so 

  (6) 1~ (0, )m m

m m
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m

k j
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As we know  depends only on the sensors received signals according to mFI [17] 
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where  is the vector of received signals and is the covariance of the AWGN at the 
mth sensor pair.  The FIM of has a block structure as 

ms mΣ
T
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Mθ θ θ θK=
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where  is the cross term FIM between  and  pairs, which is evaluated in Section ,m kI thm thk
2.2.5.  

The TDOA/FDOA estimates are then used by the sensor system to estimate the 
location of the emitter.  Because of the asymptotic properties of the ML estimator of 
TDOA/FDOA we can take the TDOA/FDOA estimates as Gaussian so that the FIM of 
the estimate of the geo-location is given by [18] 
 

 
1
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where is the Jacobian matrix of the  pair of sensors, defined by mG thm ( )m
m

∂
=

∂
θ uG

u
 and 

calculated by 
 

 . (10) 
2 2

( ) / ( ) /

( ) / ( ) / / /
m m m m

m m m m m m m m m m

T T
k k j j

m T T T
k k k j j j k k j j

r r

r r r

⎡ ⎤− − −
= ⎢ ⎥

− − − − +⎢ ⎥⎣ ⎦

x u x u
G

x u r x u r x x& & & & T r

 
Our objective is to select an optimal subset of sensors and pair them as well. The criterion 
we used to make the decision is the trace of FIM of geo-location [18],[19] as 
 
 ( ){ }max ( subset )geoall possible subset solutions

trace J  (11) 

 
 In the following sections, we discuss sensor selection algorithms for the three network 
types. 

2.2.2 Algorithms 

2.2.2.1 Pre-Paired Sensors 
When sensors are pre-paired, we simply select pairs instead of sensors.  The FIM  

and cross-FIM  are evaluated based on the paring and sensor sharing. 
mFI

,m kI
 

Type-I: No Sensor Sharing—When no sensor is shared the cross-FIMs  are zero.  
The  are evaluated individually for each pair. Then 

,m kI

mFI θF  will have block diagonal 
structure as 
 

 

1

2

M

θ

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

FI 0 0
0 FI 0

F

0 0 FI

L

O

M O O M

L

 (12) 

 
The problem of selecting  sensor pairs from pairs is specified by K N
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 . (13) 1
1 1 1 1, ,

1

max { ( ( ) ( ))}

           . .   ,    {0,1}
N

T T
N N N Np p

N i

trace p p

s t p p K N p

+ +

+ + = < ∈

G FI G G FI G
L

L

L

 
The solution of this was discussed in [19]: we simply select the K pre-paired sensor pairs 
that have the largest values of  
 
 ,{ } { T }geo k k k ktrace trace=J G FI G . (14) 
 

Type-II: De-Centralized Sensor Sharing—Here we treat sensors by sensor sets, where a 
sensor set is defined as a group of sensors which have no connections to sensors outside 
the group and do not have any independent pairs inside the group.  For the sensor 
network in Figure 2 (b), the sets are defined as in Figure 3. 

Pair
-1 Pair-4Pa

ir-
3 Pair-5

 
Figure 3 Sensor sets example 
 

The geo-location FIM of each sensor set is computed; for example, the evaluation of 
set-1 is 
 
 . (15) , 1 1 1 1 2 2 2 1 1,2 22geo set− = + +T T TJ G FI G G FI G G I G

 
Then the problem of selecting K  sensors from M sets is specified by 
 

 
1

1 , 1 ,, ,

1 1 1

max { ( )}

 . .   ,    {0,1}
         is the number of sensors in set-i

N
geo set M geo set Mp p

M i

i

trace p p

s t p n p n K N p
n

− −⋅ + + ⋅

⋅ + + ⋅ = < ∈

J J
L

L

L  (16) 
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and can be easily solved. For example, if we are asked to select 5 sensors, we can check 
the set which has 5 sensors, or the two sets which have 2 sensors and 3 sensors 
respectively, and add the trace of the two sets up, compare it with the one with 5 sensors 
and choose the larger one. 
 

Type-III: Centralized Sensor Sharing—For the pre-paired case, the central sensor is 
already specified and the remaining 1N −  sensors pair with it to form  centralized 
pairs. There are possible ways to select pairs. The FIM of this set will have the 
following structure 

1N −

1
K
NC − K

 

 . (17) 
1,

,
1 1, 1

2
m K k KK

geo k k k k m m k k
k m k m

= − =

= = = +

= +∑ ∑TJ G FI G G I ,
T G

r

 
If the  sensor is the reference sensor then Section thr

rF
2.2.5 states that  and 

. In this case, we have to evaluate the trace of all the FIMs of geo-location of the 
 possible combinations, and choose the largest one: 

k k= +FI F F

,m k ≡I

1
K
NC −

 

  (18) 1
,

, { }

1

max { ( )}

 { }is all the possible combination set

K
N

set k
set k C

K
N

trace

C
−∈

−

J

 

2.2.2.2 Non-Pre-Paired Sensors 
We are given a set of sensors and asked to optimally choose a subset and the optimal 

pairings as well. In this case the pairing provides more flexibility to enable better 
performance but it introduces additional complexity as well.  

 
Type-I Pairing of Sensors: No Sensor Sharing—For  sensors, there could be  
independent pairs. To choose 

N / 2N
( / 2K N )≤  pairs is a time-consuming work if we 

enumerated all the possible solutions. For example, 10N = , there are possible 
pairs, and possible ways to make 5 pairs as a subset. 
Fortunately, since there is no sensor sharing and we select sensors pair by pair, the 
selection of the next pair will not affect the selection of the previous one. This yields a 
tree structure and allows use of integer dynamic programming method 

2
10 45C =

( 1) ( 3) 3 1N N− ⋅ − ⋅L 945=

[2].  For this paper 
we used the “Branch and Bound” method to choose a pair at each step. The objective 
function is  
 

 ,  1

max ( )th

K

geo k pair in the solutionall feasible solutions k

trace
=

⎧ ⎫
⎨ ⎬
⎩ ⎭
∑ J  (19) 

 
A “feasible solution” means any selection/pairing of sensors where no sensors are 

shared and the selected number of sensors is as required.  Section 2.2.6 illustrates a 
simple example of this method. 
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Type-II Pairing of Sensors: De-Centralized Sensor Sharing—For  sensors, there 
could be  possible pairs. To choose 

N
2
NC 2( N )K C≤  pairs, there are 2

N

K
C

C  possible ways to pair 
and then select K pairs. For example, for 10,N 5K= = , the number of ways is 122,1759, 
which is quite large and nonconductive to listing all of them. But fortunately, among all 
this large number of ways to pair and select, only a small number of them are unique. We 
have established the following theorem which is proved in Section 2.2.7. 

Theorem: For N sensors, at most independent N-1 pairs can be used as a “sensor set”; 
and different pairing methods of the N sensors to make N-1 independent pairs will result 
in the same CRLB of geo-location. 

We can exploit this result to simplify the optimal selection and pairing for this case. 
When we are given  sensors and asked to make  pairs, there are many solutions for 
this network. We can use at least 

N K
1K +  sensors to make it or at most 2 . Since the main 

advantage to share sensors is to save some sensor energies, we would like to use the 
number of sensors as less as possible. So here we only choose 

K

1K +  sensors to make  
pairs. 

K

For example, for given  and 7N = 3K =  pairs needed, compute the FIM of geo-
location of all  solutions, and find the one with the largest trace. Inside each 
solution, sensors are “paired by sequence.”  For example, as in 

4
7 35C =

}
Figure 4, the solution set 

is . 4 1 2 5{ , , ,S S S S

 
Figure 4 An example of pairing by sequence  

2.2.3 Simulation Results 
To demonstrate the capability of the sensor selection methods we present some 

simulation results for the case of locating an emitter with a random lay-down of 14 
sensors.  The sensor selection proceeds as follows. Each sensor intercepts the emitter 
signal data at SNRs in the range of 10~15dB (where the SNR variation is assumed to 
depend quadratically on the range to the emitter). The full set of sensors share a very 
small amount of data to obtain a rough estimate of the emitter location; alternatively, we 
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could consider the case where the system is cued by some other sensor system that 
provides a rough location that is to be improved using our sensors. 

Figure 5 shows the performance of sensor selections without sensor sharing. We 
select 6 to 14 sensors to make 3 to 7 pairs, shown on the horizontal axis. The vertical axis 
shows the standard deviation of the geo-location error versus the number of sensors/pairs 
selected. The upper curve (-Δ-) shows the performance for the pre-paired sensor case 
without sharing; the lower curve (-O-) shows the performance when using the selection 
and pairing method discussed above for the case of no sensor sharing.  Not surprisingly, 
the ability to select the pairing on the basis of the sensor geometry and the rough emitter 
location enables better performance than using pre-paired sensors. 

 

 
Figure 5 Performance of sensor selection w/o sharing 

6 7 8 9 10 11 12 13 14
0

0.5

1

1.5

2

2.5

3

3.5

Number of sensors selected

St
an

da
rd

 D
ev

ia
tio

n

Standard Deviation of Location Estimation

FIM Pairing
Pre-Pairing

 

Figure 6 shows the time consumption used in pairing sensors  for the non-sharing 
case versus the number of sensors/pairs selected. The upper line (-Δ-) shows the time 
required for the enumeration-based method, the lower one (-O-) shows the time required 
for our selection and pairing method. These time results are for Matlab-based 
implementations. 
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Figure 6 Time consumption of sensor pairing without sharing 
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Figure 7 shows the performance of sensor selections allowing sensor sharing. We 
select 5 to 11 sensors from 12, to make 4 to 10 pairs. It also shows the standard deviation 
of the geo-location error versus the number of sensors/pairs selected. The upper curve (-
Δ-) shows the performance for the pre-paired sensor case with sharing; the lower curve (-
O-) shows the performance using our selection and pairing method with sharing that is 
based on the Theorem in Section 3.2. 

2.2.4 Discussion 
The results above show that it is possible to select and pair an optimal subset of 

sensors while significantly retaining performance levels. The sensor selection 
optimization problem was based on the fact that the geometry property and data quality 
of sensors play important roles in the emitter location estimation. We have used Fisher 
information to capture this inter-play between data quality and geometry.  We have 
discussed different situations: (i) pre-paired sensors vs. optimally pairing the sensors, and  
(ii) allowing shared sensors or not. Following are some general conclusions made from 
this work. 
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Figure 7 Performance of sensor selection allowed sharing 
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Conclusions: Without Sensor Sharing 

♦ FIM of Geo-Location is easy to calculate, since each pair is independent; 

♦ However, the pairing method is more complicated, since we need to consider all the 
possible pairing ways; 

♦ From a system point of view, the communication among different pairs can be done 
simultaneously; 

♦ The number of pairs needed is small; beyond a certain point the accuracy improves 
slowly as more pairs are selected to participate. 

Conclusions: With Sensor Sharing 

♦ For a total of N sensors we can have as many as 1N − pairs, the more the higher 
accuracy of location estimation; 

♦ Fortunately, FIM of all the possible independent sets are the same, so we do not need 
to consider about the pairing method. One simple way is to pair the sensors in natural 
order.  This is the main result of this work and leads to a major reduction in the 
optimization processing required. 

♦ However, since not all the pairs are uncoupled, there are cross terms in the 
TDOA/FDOA FIM. This complicates the computation required to support the 
optimization processing. 

♦ Some sensors work in more than one pair; the communication among them needs to be 
considered carefully to avoid collision.  This will be the focus of future work. 
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2.2.5 Evaluation of FIM Cross-Term 
onsider the case where two pairs share one sensor, as shown in Figure 8.  The three received signals 

2
2 2 2

3

[ ] ( ) [ ]j nT

C
at the sensors are 
 

 

1
1 1 1[ ] ( ) [ ]j nTs n s nT e nντ ω= − +

s n s nT e n
3

3 3[ ] ( ) [ ]j nTs n s nT e nντ ω= − +

ντ ω= − +  (20) 

( )
 
where t  is the transmitted signal, and [ ], 1,2,3i n iω =s  is the AWGN received b

 
y sensor. 

 
Figure 8 Two pairs shared one sensor 
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he cross term
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 FIM between pair-1 and pair-2 can be evaluated a
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Substitute  (23) and (24)
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Therefore the FIM cross-term between pairs is just the FIM of the shared sensor itself. 
he FIM of [ , , , ]Tτ υ τ υ=θ  is 
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where  iF  is the FIM of TDOA/F

.2.6 
gorithm for efficiently finding the 

optimal solution of an integer optimization problem.  It is based on the fact that the 
” the 

DOA of thi  sensor.  

Example of Branch & Bound Used in Sensor Pairing 2
Branch and Bound method is a widely used al

enumeration of integer solutions has a tree structure.  It begins “growing
enumeration tree by creating partial solutions called “buds.” The quality of a bud is 
assessed using the “bounding function,” which provides an optimistic estimate of the best 
value that the objective function could possibly obtain by extending from a given bud.  
The best complete feasible solution found at any stage of growth of the tree is called the 
incumbent; a feasible solution is one that satisfies any given constraints.  A complete 
solution occurs at a “leaf” in the tree.  Efficiency is obtained by pruning unfruitful 
branches of the tree by using a “bounding function.” Buds are pruned if (i) further growth 
can not yield a better result than the incumbent (i.e., the bounding function value of the 
bud is inferior to the objective function value of the incumbent), or (ii) further growth can 
not yield any feasible solutions.  The optimal solution is found when further growth can 
not occur.  For our application a feasible solution is one for which no sensor sharing 
occurs.   

Consider an example of the sensor pairing and selection for 8N = sensors; there are 
28 possible pairs. In this example we will arbitrarily assign values for the each pair so as 
to illustrate the typical operation. Our objective function is  
 

 
/2

1

max ( )th

N

n pair in a solutionfeasible solution n

trace FIM
=

⎧ ⎫
⎨ ⎬
⎩
∑  (30) 

⎭

 sensor pair without sensor sharing. The 
ounding function used is

1n=

 
Here, feasible solution is the com
b

bination of
  

 

 
/2

 
max ( )th

N

n pair in a solutionany solutions
trace FIM⎧ ⎫

⎨ ⎬∑  (31) 
⎩ ⎭

The solution in bounding function can be any ination of sensors, shared or non-
ared. Let (n, m
ithout loss of generality that are the pairs that include sensor-1. 

 
comb

) represent the pairing of sensor-n and se
, we choose as buds 

sh nsor-m.  In the first step, 
w
Figure 9 shows this first layer of buds.  If we choose pair (1,2) as the first pair, then the 
bounding function value for it is 71 in this example, which leaves pairs (3,5)-(3,6)-(7,8) 
as the subsequent possible pairs. Since sensor-1 and sensor-2 are actually paired, we did 
not reuse them in the bounding function calculation at this node or any descendent nodes. 
From the bounding function value we know that the very best objective function value 
that we might have at a leaf node descended from (1,2) is 71. Since sensor-3 is shared 
between two pairs, this solution is not feasible, but at this stage it is retained because this 
infeasible solution is simply used to evaluate the bounding function for the feasible 
solutions that lie below this bud.   

The first step of the tree is generated from the root node by enumerating all the 
possible pairs which have sensor-1. By evaluating the bounding function, we get our first 
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incumbent (i.e., best feasible solution so far) as (1,5)-(2,4)-(3,6)-(7,8) , as incumbent=70; 
the buds that are shown exceeding this value can not be the incumbent because their 
bou

governs the choice of the next bud for expansion; we 
use

his gives the 
nex

bal-best node selection policy assesses the bounding 
fun

nding functions are computed based on infeasible solutions; however, they are 
retained to be grown further in hope that they may yield winning feasible solutions in the 
future. We now prune the pairs (1,6) and (1,8), because their bounding function values 
are smaller than the incumbent’s.   

Pruned nodes are indicated by a dashed border, the incumbent node is indicated by a 
bold solid border; nodes whose bounding function value is larger than the incumbent’s 
but are based on infeasible solutions are shown by a non-bold solid border. 

There needs to be a policy that 
 the global-best node selection policy, which chooses from all the bud nodes on the 

tree the one that has the best value of the bounding function.  Thus, we choose pair (1,7) , 
which has the largest bounding function value, for first further expansion. T

t tree step as shown in Figure 10. 
This expansion is generated from the (1,7) node by enumerating all the possible pairs 

which have sensor-2, this is based on the so-called natural order. After evaluating all the 
bounding function values, some new nodes were pruned. But a new incumbent was not 
found in this expansion. Also, the glo

ction values of all current remaining nodes (even those in the “Step-1 layer”), and 
chooses the one with the best bounding function value to expand further.  Thus, the 
partial solution (1,7)-(2,4) is expanded next, which gives the result shown in Figure 11. 

 

 
Figure 9: Illustration of first step of tree 
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ee 

We now have found that (1,7)-(2,4)-(3,5) is a feasible solution with a value higher 
than the previous incumbent’s value of 70 and higher than any other feasible bud; thus, it 
becomes the incumbent with a value of 74.  Note that now all other remaining buds have 
bounding function values that are less than or equal to the incumbent’s value of 74; 
therefore, it is impossible for any of these buds to generate a feasible solution that beats 
the current incumbent.  Thus, all other nodes are shown as pruned in Figure 11, and (1,7)-
(2,4)-(3,5)-(6,8) is the optimal feasible solution  It should be noted that if all the buds 
grown out of (2,4) had a bounding function value less than the incumbent in Figure 10, 
then they would all be pruned; then the global-best node selection rule would go back to 
(1,4) and grow from there because it has the largest bounding function value of all buds 
grown so far on whole tree. 

In this particular example, we only evaluated 15 nodes, which is much smaller than 
the work of a full enumeration of the 105 possible solutions. 

Simulation in Figure 12 gives the comparison of time consumption between 
enumeration method and the branch and bound method. We only let 14N =  for the 
largest number, since for larger N , the enumeration method is virtually impossible to 
realize. 

 

Figure 10: Illustration of second step in tr
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Figure 12 Time consumption of sensor pairing 
 

Figure 11: Illustration of third step in tree 
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2.2.7 Proof of Theorem 
Let rk be the distance between kS  and the emitter and let  ,k j k jr r r= −

emitter distance difference for , {1,2,... },k j N k j

be the sensor-
∈ ≠ . Then the relations between

,k jr  are as following 
 

 

1 1

2 2

1

2

11M M

k j

k j
M N

k j N NM

r r
r r

r r

×

××

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥

 kr  and 

= = ⋅
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦

T T r�
M M

 
where T  is an 

 (32) 

M N×  matrix, (M is the number of pairs and N is the numb
which has only one ‘1’ and one ‘-1’ in each row. For the structure of T
less than 1N − , which means there are at most 1N

er of sensors), 
, the rank of T  is 

−  kjr  independent pairs. Independent 
pairs, simply speaking, means that there are no closed loops in the 
in the subset. For example, in the pairing in Figure 13, the pairs (1,2), (1,3
dependent pairs; (3,4), (4,5) and (5,6) are independent pairs.  

Let there be a different reference sensor (RS) in each different independ
Figure 14. In set-I, iS  is the RS; in set-J, jS  is the RS. 

 

graph of the  sensors 
) and (2,3) are 

ent set as in 

 
Figure 13 Independent and dependent pairs 
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igure 14 Same subset with different reference sensor F

 

Let c be the signal propagation speed, the range difference equation is 
 
 kj kj k jr c r rτ= = −  (33) 
 
When the receivers are moving, taking time derivative of (33)  yields a set of FDOA 
measurement equations 
 
 kj kj k jr c r rτ= = −& & & &

 
where ir&  is the rate of change of ir . From the time derivative of (3)
unknown location u  by  
 

 

 (34) 

, ir&  is related to the 
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i i

i
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r
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x u x&
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ki Nir r k i= ≠& & &K K and p K K

1 1[ , , , , ; , , , , ] ,T
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 i
i i

i

⎡ ⎤
= =⎢ ⎥
⎣ ⎦

Τ 0
p rd H rd

0 Τ
� �

 

 (36) 

j j
j

⎢ ⎥
⎣ ⎦

d H rd
0 Τ

j⎡ ⎤
= =

Τ 0
p r� �  (37) 

 
where iT  and jT  are ( 1)N N− ×  matrixes, which only has one ‘1’ and one ‘-1’ in each 
row, and 0  is a ( 1)N N− ×  matrix with all 0 entries. It is easy to verify that there exists a 
2( 1) 2( 1)N N− × −  full rank matrix ijQ , which satisfies 
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 j ij i=H Q H�  (38) 
 
 j j ij i ij i= =p H rd Q H rd Q p� � � �=
 
Then 
 

 

 (39) 

( ) ( )ˆ ˆ( ) [ ] ( ) [ ]

ˆ                 ( )

Ti i
j i

i i
T

ij i ij

CRLB CRLB

CRLB

∂ ∂
=

∂ ∂

=

g p g pp p
p p

Q p Q

� �

� �

 

 (40) 

r set-I as ˆ iu ; then the CRLB of 
i  is 

 
i i i i

Denote the emitter location u  estimated by sensor pai
û

 1ˆCRLB( ) T −=u G C G� �

here ˆ ˆ[ ]T
i i iE= ⋅C p p  is the covariance m trix of the TDOA/FDOA estimates. 

the  CRLB, so ˆ( )i iCRLB

 (41) 
 
w a
Since TDOA/FDOA are estimated by the ML method, we can assume that the covariance 
of the estimates achieve C p=  and  

ˆ( )j jCRLBC p p
 
 T T

ij ij i ij=Q Q C Qˆ ( )ij iCRLB= = Q � � � �  (42) 
 
where iG  is the Jacobin matrix of set-I defined by 
 

 
( ) ( )j i[ ( )]j ij i ij ij i∂u

∂ ∂ ∂
= = = =

∂ ∂
p u p uG Q p u Q Q G

u u
� � �  (43) 

hen 

1

) (

               

               
ˆ               

ij i ij i ij ij i

−

 
T
 

1T
j j

T T

−C G�ˆCRLB( )

                 (
j =

=

u G
1) ( )−Q C Q Q G

j

Q G

�

� � � � � �

 ]ij ij iQ G1 1

1

  [ ( ) ] [

  

T T T
i ij ij i

T
i i i

− −

−

=

=

G Q Q C Q

G C G

� �

� �

   = CRLB( )iu

�

at fo e CRLB of
stimation are the same. 

�  (44) 

 
Thus, we have proved th  emitter location r all the independent sets, th
e
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3 f Previous Results  Refinement & Extension 

.1 
ully made to run.  The effort was re-

e

 Using the STFT  
 

much different than when using the orthogonal 
at it has been shown to be better at estimating the Fisher information.  

loped for testing the compression methods 
eveloped at Bingha  this 
port. 

 
 

Course notes are com  notes could 
and will be developed outside th the lectures were 
attemp  offer in June 2007) but both plans were 
borted due to challeng

under production and will be date to be determined – terms 
of use for these video lect personnel. 
 

s at status meetings it became clear that AFRL researchers were 
onsulting many of the early papers on TDOA/FDOA that were written by sonar 
searchers.  The PI was concerned that these sonar-based results may not be directly 

pplicable to TDOA/FDOA for electromagnetic communication signals.  As part of this 
funded effort, it has been discovered that many widely-known results in the 
TDOA/FDOA literature are not at all applicable to the case when the signals are 

o
 
3 Improved Geometry-Adaptive Compression 
 

Code was written for this but never successf
directed to the Sensor S lection Task, which proved to be harder than anticipated. 
 
3.2

Code was developed and successfully tested.  The code is include  in the Matlab code  
ivered separately from this report Surprisingly the resulting p rformance was not 

d
e

wavelet-packet filter bank despite the fact 
del

th
 

4 Integration into a Matlab-based Test-Bed 
 

Code for a Matlab testbed has been deve
d mton University.  The code will be delivered separately from
re
 
 

5 General Location Studies 

5.1 Develop & Offer Short Course  
 

plete although there are new issues for which new
e support of this grant.  Plans to offer 

ted twice (to offer in January 2007, to
es in schedules.  As a way to satisfy this t

 provided to AFRL at a later 
ures are currently under discussion with AFRL 

a ask, video lectures are 

5.2 Concept Studies, Evaluation, and Analysis 
 

During the discussion
c
re
a
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electromagnetic signals.  That is, results that have been developed under the assum
that the signal is a WSS Gaussian process (the preferred model for many of the 

ption 
early 

nar-driven papers on TDOA/FDOA) may not carry over to the electromagnetic case, 
 developed 
xtend them 

 t

uency-difference-of-arrival (FDOA) between pairs of 
his involves a sequence of two estimation problems: (i) 

processing the signals to give a set of TDOA/FDOA estimates (e.g., [3], [5], [6], [7], [8], 
[9], 

fore, much work 
as been done to derive optimal TDOA/FDOA estimates and to characterize their 

rstand the 
een used.   

D

er was TDOA/FDOA-based location considered for the case of passively locating 
lectromagnetic sources [9], [11], [13], [16].  For electromagnetic sources such as radar 
nd communication transmitters, a stationary random process is generally deemed 

y be better [16].  Stein [16] considers 
ministic case (but did not develop the 

r mer-Rao bound for that case) and Quazi [8] briefly addresses the deterministic vs. 
een active vs. passive location 

ystems for the acoustic and 
lectromagnetic scenarios).  In general, there seems to be confusion and unawareness 

abo

.2.1 Impact of Signal Model on TDOA/FDOA Results 

so
which is not accurately modeled by a WSS Gaussian process.  The PI has

odified results for many of the early (sonar-based) TDOA/FDOA results to em
to he electromagnetic case.   

The location of a source can be determined from signals intercepted at several 
nsors.  One of the most effective methods is to use estimates of the time-difference-of-se

arrival (TDOA) and/or the freq
signals received at the sensors.   T

[10], [12], [14], [15], [16] ), and (ii) processing the resulting TDOA/FDOA estimates 
to estimate the location (e.g., [4], [11], [13]).   

Optimal processing for the second stage requires an understanding of the probabilistic 
characteristics of the TDOA/FDOA estimates from the first stage.  There
h
covariance matrix.  However, as this correspondence will point out, when using results 
from the many papers on TDOA/FDOA estimation it is important to unde
differences that arise due to the different signal models that have b
T OA/FDOA results were first developed in the early 1970s for the case of passively 
locating underwater acoustic sources, where the accepted model for the signal is a WSS 
random process (almost always assumed Gaussian) [3], [5], [6], [7], [8], [10], [12], [14].  
Only lat
e
a
inappropriate and a deterministic signal model ma
the development of the ML estimator for the deter

aC
random signal differences but only in the context betw
systems (he does not mention differences between passive s
e

ut the differences between the passive acoustic case and the passive electromagnetic 
case2.  For example, many times acoustic-signal results have been misused in the 
electromagnetic scenario; this seems to occur more often than the reverse –likely due to 
the fact that the acoustic setting was the first explored and has generated many widely-
known publications. 

5

5.2.1.1 Signal Models 
The model for two sampled passively-received complex baseband signals at two 

sensors is given by 
 

                                                 
2 We use the terms “acoustic” and “electromagnetic” as merely convenient labels that arise from the 
historical development of TDOA/FDOA results; it is of course possible to have an acoustic signal that is 
better modeled as deterministic or to have an electromagnetic signal better modeled as random. 
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1

2

1 1 1

2 2 2

[ ] ( ) [ ]

[ ] ( ) [ ]

j nT

j nT

r n s nT e w n

r n s nT e w n

ν

ν

τ

τ

= − +

= − +
 (45) 

 
where s(t) is the complex envelope of the continuous-time transmitted signal, T is the 
sampling interval, the wi[n] are corrupting noises, τ  and τ  are delays, and ν  and ν  are 
Dop

1 2 1 2
pler shifts.  It should be mentioned that for electromagnetic signals it is usually 

appropriate to use Doppler shift to model the effect of motion between source and 
receiver, but for acoustic signals it is often not appropriate to use Doppler shift; however, 
to allow easier focus on the statistical model differences we assume here that this is valid.  
The TDOA Δτ = τ1 – τ2 and the FDOA Δν = ν1 – ν2 are the parameters to be estimated 
from time-domain samples of these signals; we define [ ]Tvτ= Δ Δθ . For both the 
acoustic scenario and the electromagnetic scenario, the accepted modeling assumptions 
for the noises wi[n] are (i) they are zero-mean WSS random processes, (ii) they are each 
Gaussian, and (iii) they are independent of each other.  In general they are not necessarily 
assumed to be white, but that is a common assumption.  For notational purposes: (i) the 
signal [ ] ( ) ijv nT

i is n s nT eτ= − , (ii) the vector ri is the vector with elements that are the 

values of ri[n], and (iii) the vector r is 1 2

TT T⎡ ⎤= ⎣ ⎦r r r ; the vector s is defined as 

1 2

TT T⎡ ⎤= ⎣ ⎦θs s s , where we explicitly notate the dependence on the TDOA/FDOA 

parameter vector θ. 
This much is common between the acoustic and electromagnetic scenarios.  The 

differences arise in what is assumed about the signal si[n].  For the acoustic scenario the 
accepted modeling assumptions on the signal si[n] are: (i) it is a zero-mean WSS random 
process, (ii) it is Gaussian, (iii) it is independent of each noise process, and (iv) it need 
not be assumed white, although that is a special case that is often considered.  This 
random-signal model arose due to the fact that the early TDOA/FDOA researchers were 
investigating passive sonar, where the acoustic signals were made by the motors of ocean 
vehicles.  For this scenario: (i) the WSS random process assumption is consistent with the 
erratic nature of the motor sounds, (ii) the Gaussian assumption is motivated by (perhaps) 
the central limit theorem and (certainly) the tractability it provides, and (iii) the 
independence of signal and the noises is reasonable based on physical considerations. 

There are very few published fundamental results on TDOA/FDOA estimation for 
electromagnetic signals (e.g., [9], [16]).  Signals emitted by electromagnetic sources tend 
to have much more regular structure than the erratic variations seen in acoustic signals 
made by ocean vehicles; therefore they don’t readily evoke the notion of random process.  

 uniformly 
 very 

 random process.  Similarly, radar pulse trains can be viewed 

 their widely spaced pulses – can hardly be thought to be WSS 
processes (e.g., variance within a pulse is not equal to the variance between pulses).  

to 
made for 

Still, a classic example of a WSS random process is a sinusoidal signal with
distributed phase; despite the fact that each realization of this process exhibits
regular structure it is a WSS
as random processes for the very same reason: they can be modeled as having random 
transmission parameters (e.g., random time offset, random phase offset, etc.).  However, 
such signals – with

Furthermore, they certainly cannot be modeled as Gaussian, and finding some other 
suitable probability model seems daunting and is generally fruitless when one tries 
solve problems using such a probability model.  Similar arguments could be 
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m gh not for all.  Thus, in such 
a eterministic signal rather than 

any other types of electroma
 scenario it is prudent to consid
 random signal [16]. 

gnetic transmitted signals, thou
er the signal si[n] to be a d

a
When we consider the estimates of TDOA and FDOA, ˆ

τΔ  and ˆ
vΔ , we typically wish 

to find unbiased estimates that minimize ( ){ }2ˆE τ τΔ − Δ  and ( ){ }2ˆ
v vE Δ − Δ .  Here is an 

immediate fundamental distinction between these two models: it needs to be understood 
that when the signal is random these expectations are taken over the combined ensemble 
of signal and noise whereas when the signal is deterministic these expectations are taken 
over only the noise ensemble.  Thus, when the signal is random we are finding the 
average squared error over all possible noises and signals (within the ensemble); when 
the signal is deterministic we are finding the average squared error over all possible 
noises for one specific signal.  Furthermore, in simulations for the random signal case, in 
each Monte Carlo run the signal is selected from its ensemble and the noise is selected 
from its ensemble; whereas for the deterministic signal case the same signal is used in 
every Monte Carlo run.  

 

5.2.1.2 PDFs Under the Signal Model
ese differences, from the above discussion we see that for both models the 

received data vector 
thes

s 

ussian 
Despite th

r is Gaussian and has a Ga stinction between 

 

PDF.  The key di
e two scenarios that drives all the differences in the FIM, the CRB, and the MLE 

processing is the manner in which the TDOA/FDOA impacts the parameters of the 
Gaussian PDF of data vector r.  For the case of the acoustic scenario, the mean of r is 
zero and the covariance matrix of r depends on TDOA/FDOA, so we denote it as θC to 
show that dependence.  In contrast, for the case of the electromagnetic scenario, the mean 
of r is 1 2

TT T⎡ ⎤= ⎣ ⎦θs s s which depends on TDOA/FDOA and the covariance matrix of r is a 
block diagonal matrix of the two individual noise covariance matrices, and therefore does 
not depend on TDOA/FDOA so we denote it as C in this case.  From this single 
distinction we see that the PDF for the acoustic case is 
 

( ) { }11( ; ) exp
det

H
acp

π
−= − θ

θ

r θ r C r
C

 (46) 

 
and the PDF for the electromagnetic case is 
 

 
( ) { }11( ; ) exp ( ) ( )

det
H

emp
π

−= − − −θ θr θ r s C r s
C

. (47) 

 
The differences between the PDFs for these two signal model scenarios is clearly evident 
in (46) and (47); it is this difference that leads to significant differences in the structures 
of Cramer-Rao bounds as well as the maximum likelihood estimators for the two cases.  
It should be observed that these are each a special case of the complex general Gaussian 
case (see Ch. 15 of [17] for the complex data case covered here) given by  
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( ) { }11( ; ) exp ( ) ( )Hp −= − − −r θ r

detgg π θ θ θμ C r μ
θC

 

. (48) 

where both the mean θμ and the covariance vector θ. 
 

5.2.1.3 Fisher Information and Cramer-Rao Bound 
The elements of the Fisher information matrix Jgg for the complex general Gaussian 

scenario PDF in (48) is a standard result [17] given by  
 

 

θC of r depend on the parameter 

1 1 1[ ] 2 Re ( ) tr
H

gg ij
i j i j

J
θ θ θ θ

− − −
⎛ ⎞⎡ ⎤ ⎛ ⎞⎡ ⎤∂ ∂ ∂ ∂⎜ ⎟= + ⎜ ⎟⎢ ⎥⎢ ⎥ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎝ ⎠⎝ ⎠

θ θ θ θ
θ θ

μ μ C CC θ C C . (49) 

 
Notice that there are two terms in this result: one that depends on the sensitivity of the 
mean to the parameters and one that depends on the sensitivity of the covariance to the 

gnetic scenarios are two different special parameters.  Because the acoustic and electroma
cases of the generalized Gaussian scenario, we can use the result in (49) to find the result 
for each of these two special cases. 

As discussed above, for the acoustic scenario the mean of r is zero and therefore does 
not depend on the parameter vector; thus the first term in (49) is zero and the Fisher 
information matrix Jac for the acoustic scenario is then given by   
 

 [ ] 1 1trac ij
i jθ θ

− −⎡ ⎤∂ ∂
= ⎢ ⎥∂ ∂⎢ ⎥⎣ ⎦

θ θ
θ θ

alent approaches that avoid direct 
se of (50) have been found (see for exam

For the electromagnetic s
em

lectromagnetic scenario is thus given by   

C CJ C C , (50) 

 
which gives a result that is well known in the TDOA/FDOA literature for the acoustic 
signal scenario (e.g., [10], [12]).  The corresponding CRBs are found by inverting the 
respective FIM; doing that directly is difficult but equiv
u ple [12]).  

cenario the covariance of r does
 in (49) is zero and the Fisher inform

n’t depend on the parameter 
vector; thus, the second term ation matrix J  for the 
e
 

[ ] 12 Reem ij
i j

⎧ H

θ θ
−

⎫∂ ∂⎪ ⎪= ⎨ ⎬∂ ∂⎪ ⎪⎩ ⎭
θ θJ C s s , (51) 

 
hich surprisingly is not widely seen in the TDOA/FDOA literature for the w

electromagnetic signal scenario.  See Section 5.2.4 for details of evaluating this form to 
compute the FIM for TDOA/FDOA under the deterministic signal case.  The 
corresponding CRBs are found by inverting the respective FIM; doing that using (51) 
leads to forms that are similar but not identical to those given without proof in [9] for the 
continuous-time case. 
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Comparing (50) and (51) we see that there is a significant difference between the 
ructures of
onvenient to use “W
 the spectral dom oach for the WSS-signal case 

nal 
lements of the acoustic scenario FIM in (50) are zero under the mild assumption of a 

tic scenario the optimal 
ate of FDOA.  However, 

the 
e case of white 

noise the result in (51) gives the off-diagonal FI element as 
 

 [ ]

st coustic scenario it is 
c ion for a WSS process 

 the FIM for the two cases.  In particular, for the a
hittle’s Theorem” to write the Fisher informat

ain [14]; however, this alternative apprin
can not be used for the electromagnetic scen io.  An even more important distinction is 
as follows.  As pointed out in several publications (e.g., [10], [12], [14]) the off-diago

ar

e
large time-bandwidth product, thus indicating that for the acous
estimate of TDOA should be uncorrelated with the optimal estim

electromagnetic scenario FIM in (51) does not, in general, yield this uncorrelated 
TDOA/FDOA condition.  For example, Section 5.2.4 shows that for th

* *
1 12 2

1 2

1 12 Re ( ) ( ) ( ) (
n n

jnTs nT s nT jnTs nT s2 212 )em nTτ τ τ
σ σ

′ ′= − − − + − −∑ ∑ τ
⎧ ⎫

−⎨ ⎬
⎩ ⎭

J , (52) 

 
where ( )s t′ is the derivative of s(t).  From this result we see that the off-diagonal element
in general is not zero; as an illustration, the linear chirp signal has been shown to have 
non-zero cross-FI 

 

is uncorrelated from the optimal FDOA estimate but 
that

n ML estimator for the 
DOA/FDOA values, their estimates can be taken to be Gaussian and then the CRB on 

the location estimate covarian

 

[18].  Thus, for the acoustic case we can expect that for a pair of 
sensors the optimal TDOA estimate 

 should not be expected in the electromagnetic case. 
An important impact of this comes when assessing the location accuracy that can be 

achieved from a set of TDOA/FDOA measurements.  Assuming a
T

ce becomes 

1( )T
loc

 
−=C G JG  (53) 

.2.1.4 Maximum Likelihood Estimator 
The ML estimator is found by m

pressed by taking vatives of the LLF with respect to
arame lex generalized Gaussian case 

 
where J is the FIM for all N TDOA/FDOA measurements and G is the Jacobian of the 
TDOA/FDOA values with respect to the emitter’s location coordinates [13], [19].  From 
(53) it is clear that when performing studies of location accuracy, using the incorrect FIM 
for TDOA/FDOA  – i.e., using the acoustic FIM when the electromagnetic FIM should 
be used, or vice versa – can lead to incorrect conclusions about location accuracy. 
 

5
aximizing the log like

 partial deri
ter and setting them equal to zero.   For the comp

lihood function (LLF), which is 
typically ex  each 
p
there is a standard result (see Sect. 15.7 of [17]) given by  

 

 { } [ ] [ ] [ ]1 1 1 1ln ( ; )
tr 2 Re H Hgg

i i i i

p
θ θ θ θ

− − − −
∂ ⎧ ⎫⎛ ⎞∂ ∂ ∂

= − + − + − −⎨ ⎬⎜ ⎟∂ ∂ ∂ ∂⎩ ⎭⎝ ⎠
θ θ θ

θ θ θ θ θ θ θ

r θ C μ CC r μ C r μ C C r μ . (54

 

) 
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Notice that there are three terms in this result: one that depends on the sensitivity of the 
mean to the parameters and two that depend on the sensitivity of the covariance to the 
parameters.  Because the acoustic and electromagnetic scenarios are two different special 
cases of the generalized Gaussian scenario, we can use the result in (54) to find the result 
for each of these two special cases. 

For the acoustic scenario the mean of r is zero and therefore does not depend on the 
parameter vector; thus, the partial derivatives of the LLF for (46) are given by just two 
terms from (54): 
 

 
( ) 1( ; ) ln det Hac

i i i

p π
θ θ θ

−

− −

∂ ∂ ∂
= − −⎡ ⎤⎣ ⎦∂ ∂ ∂

⎛ ⎞∂ ∂

θ θ
r θ C r C r

C C1 1 1tr H −= − +⎜ ⎟θ θC r C C r
 (55) 

 it is 
 
 

i iθ θ∂ ∂⎝ ⎠
θ θ θ

passive sonar literature (e.g., see [10],[12]).  In [12]
 
This result is well known in the 
further d that for the TDOA/FDOA case the determinant term in the first line of  state (55)
does not depend on the parameter vector; therefore, the first term in the second line of
(55) can be ignored to give  
 

 1 1( ; ) Hacp
θ θ

− −∂ ∂
=

∂ ∂
θ

θ θ
r θ Cr C C r . (56) 
i i

 
It should be noted that finding the value of θ that drives (56) to zero is equivalent to 
 

{ } 1
, max H

ML ac
−
θr C r  (57) 

or the electromagnetic scenario the covariance of r does not depend on the parameter 

ˆ arg= −θ
θ

 
F
vector; thus, the partial derivatives of the LLF for (47) are given by the second term in 
(54) 
 

 [ ] 1( ; ) 2Re Hem

i i

p
θ θ

−⎧ ⎫∂ ∂
= −⎨ ⎬∂ ∂⎩ ⎭

θ
θ

r θ sr s C . (58) 

rives (58) to zero is equivalent to 
 
It should be noted that finding the value of θ that d
 

 
{ }

{ }{ }

1
,

1 1

ˆ arg max [ ] [ ]

arg max 2 Re

H
ML em

H H

−

− −

= − − −

= −

θ θ
θ

θ θ θ
θ

θ r s C r s

r C s s C s
 (59) 

 
Comparing (56) and (57) to (58) and (59) shows that we should expect fundame

ifferences between the MLE for the acoustic and electromagnetic cases.  Surprising
volves pre-filtering the received signals 

ntal 

llowed by cross-correlation (see [5], [12] for the acoustic case and [16] for the 

d ly 
though, each case results in a structure that in
fo
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electromagnetic case).  However, although both cases share this generalized correlator 
structure, the pre-filtering needed for each case is quite different.  For the acoustic case 
the filters depend on an interplay between the signal PSD and the noise PSD [5], [12], 
whereas for the electromagnetic case the filters depend only on the noise PSD and not on 
the signal’s spectral structure [16].  As a result, the acoustic generalized correlator 
simplifies to a standard correlator only when noise and signal are white [5], [7] whereas 
the electromagnetic generalized correlator simplifies to a standard correlator whenever 
the noise is white, regardless of the signal’s spectral structure [16].  Despite this 
ifference in ML structure for the two scenarios there are many cases in the literature that 

address the electrom es use) the acoustic 
scenario’s generalized correlato

For the determ n deterministic 
signal.  It is clear from aximization in (59) 

volves the unknown signal vector s

 decentralized pairwise basis rather than using all received 
gnals in a centralized processor to join ate all TDOA/FDOA values.  Although 
einstein does not explicitly state that he

ses is given by (46) and not by (47) and therefore all the results in [10] are applicable to 
 that 

einstein’s general insights for the near equivalence of decentralized and centralized 
rocessing when the SNR is high carries

gnetic case is more com
an for the acoustic case and does not seem to lead to easily generalized results. 

s an example of the impact of using results from the wrong signal model, consider a 
ar α rad/sec2:  

2( /2)( )[ ] j j nTn e eϕ α=
sults in Section 5.2.4

d
agnetic case but reference (and sometim

r when it is not appropriate. 
Another interesting difference between the two scenarios is po

inistic signal, the MLE involves estimating the unknow
 (59) that this step is necessary since the m

inted out by Stein [16].  

in θ.  The development of the MLE for this scenario 
naturally includes the estimation of the underlying signal as an intrinsic part of the 
processing. 

Weinstein [10] explored the losses that arise when the ML estimator for 
TDOA/FDOA is done on a
si tly estim

 considers onl
l is modeled as a WSS Gaussian

W y the passive acoustic scenario 
nor does he state that the signa  process, the PDF that he 
u
the acoustic scenario but not to the electromagnetic scenario.  It is not clear
W
p the electromagnetic case; the 
decentralized vs. centralized analys plicated 

 over to 
is for the electroma

th

5.2.2 An Example 
A

signal that is a line  chirp signal having frequency sweep rate of 
. The correct FIM for a chirp signal wo

 and can be shown to be [18] 
s uld be computed using the 
re

 
2α α⎡ ⎤ 

1right α⎢ ⎥
⎣ ⎦

ents show that for this determ
e TDOA and FDOA estim

J � , (60)              

correlation between th ates.  However, if one were to 
incorrectly use the uncorrelated TDOA/F

 
where the non-zero off-diagonal elem inistic signal there is 

DOA result that arises from the acoustic signal 
model (but still properly compute on-diagonal elements of the FIM) you’d get 
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2 0

0 1wrong
α⎡ ⎤
⎢ ⎥
⎣ ⎦

J � , (61)   

 
If we consider the case of two sensor pairs (no sharing of sensors between the pairs) with 
the same SNR at all sensors then the CRLB of the geolocation estimate is given by  
 
 

           

( ) 1

1 1 2 2geo

−
= +T TCRLB H JH H JH , (62) 

 
where Hi is the Jacobian matrix of the TDOA/FDOA measurements for the ith sensor 
pair[13].  Taking the ratio of (62) evaluated using (60) to (62) evaluated using (61) gives 
a metric of the impact of using the incorrect uncorrelated TDOA/FDOA result.   

The sensor/emitter geometry considered here is as follows: Emitter at (xe,ye)=(0,0), 
Sensor Pair #1 at x,y positions of (-10,-50) and (10,-50) in km and both x,y velocities of 
(0,300) in m/s, Sensor Pair #2 at x,y positions of (50,-10) and (50,10) in km and both x,y 
velocities of (300 cos(θ ), 300 sin(θ )) in m/s, where θ is the heading of each sensor in 
Sensor Pair #2  The surface plot in . Figure 15 shows how the ratio of the two evaluations 
of (62) varies as a function of sweep rate α and Sensor Pair #2 heading θ ;  the range of 
heading angle is 0 to 360 degrees and the range for sweep rate is 104 to 108 rad/sec2 (or 
about 1.6 kHz/sec to 16 MHz/sec), which are reasonable values for radar pulses.  Note 
that a value near 1 for the plotted ratio shows that there is little impact in using the 
incorrect uncorrelated TDOA/FDOA result.  Note that there are some conditions where 
there is little impact but there are many where the incorrect CRLB differs significantly, 
showing the importance of using the correct model’s results. As α gets larger the ratio 
converges to 1; this is due to the fact that for very large α the α2 term dominates the α 
off-diagonal terms in (60).  Similarly, at lower values of α the off-diagonal terms in (60) 
have a negligible impact and the ratio is also effectively 1. 
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Figure 15: Ratio of the wrong CRLBgeo to the right CRLBgeo as a function of sweep 
rate α and heading θ  of sensor pair #2.  

5.2.3 Conclusions 
The signal models for these two cases (passive acoustic and passive electromagnetic) 

may seem to be the same at a casual look (i.e., the equations in (45) are used in each case) 
but the underlying assumption about the signal (i.e., WSS Gaussian signal for the passive 
acoustic case and a deterministic signal for the passive electromagnetic case) leads to 
important differences in the results for the FIM, CRB, and MLE.  The main differences 
are that: (i) the general structures of the FIM and CRB are significantly different; (ii) a 
key specific difference in the FIM/CRB structure is that unlike in the acoustic case, for 
the electromagnetic case the FDOA and TDOA estimates of a signal pair are likely to be 
correlated;  (iii) for the electromagnetic case the MLE is an unfiltered cross-correlator 
whenever the noise is white (the acoustic case requires the signal to be white in order to 
remove the filters).  Ignoring these differences can lead to incorrect location accuracy 
assessments as well as improper choices when developing processing schemes. 
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5.2.4 Derivation of FIM for Deterministic Signal Case 
To evaluate the FIM in (51) for the deterministic-signal TDOA/FDOA case we need 

partial derivatives of the signal vector 1 2

TT T⎡ ⎤= ⎣ ⎦θs s s .  Using the signal model in 
get 

 

 

(45) we 
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where i′s  is the vector of samples of the time-derivative of the received signal; we have 
used the chain rule here and the fact that  

 (63) 
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where is%  is the vector with elements that are the elements of is multiplied by the 
corresponding  jnT with n running sequentially over its range.  Using these results in 
gives 
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where Ci is the covariance of the ith noise process.   For white noise with noise variances 
of 2

iσ we get 
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